Search results for "Band gap engineering"

showing 2 items of 2 documents

Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap.

2016

Brotons-Gisbert, Mauro et al.

MicrophotoluminescenceMaterials sciencePhotoluminescenceBand gapchemistry.chemical_elementBioengineeringNanotechnology02 engineering and technologyTwo-dimensional materials010402 general chemistry01 natural sciencesCondensed Matter::Materials Sciencechemistry.chemical_compoundSelenideGeneral Materials ScienceIndium selenideOptical propertiesbusiness.industryMechanical EngineeringMetamaterialGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter PhysicsNanotexturing0104 chemical sciencesSemiconductorchemistryQuantum dotBand gap engineering0210 nano-technologybusinessIndiumVisible spectrumNano letters
researchProduct

Doping induced stable room temperature dual emission from gadolinium doped vacancy ordered double halide perovskite, Gd:Cs2SnCl6

2022

The recent advancement in bandgap engineering through controlled doping has widen the prospectof vacancy ordered double halide perovskites (VO DHPs) by conferring them with designableoptoelectronic properties. Here, we report synthesis of Gd doped Cs2SnCl6 via a simplesolvothermal method. Gd3+ ions doping lowers the band gap from 3.8 eV to 2.8 eV and facilitatesstable room temperature dual PL emission centered at 440 nm and 610 nm. The macroscopicemission process is well supported by the confocal PL emission studies on isolated crystallites.Both the pristine (Cs2SnCl6) and Gd:Cs2SnCl6 exhibit crystalline cubic structure with Fm3m spacegroup. Rietveld refinement correlates well with the cubi…

band gap engineering[CHIM.MATE] Chemical Sciences/Material chemistryphotoluminescence (PL) emissionconfocal PL spectroscopyvacancy ordered (VO) double halide perovskites (DHP)
researchProduct